P-matrix recognition is co-NP-complete

نویسنده

  • Jan Foniok
چکیده

This is a summary of the proof by G.E. Coxson [1] that P-matrix recognition is co-NP-complete. The result follows by a reduction from the MAX CUT problem using results of S. Poljak and J. Rohn [5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 35 19 v 1 [ cs . C C ] 1 8 O ct 2 00 7 P - matrix recognition is co - NP - complete

This is a summary of the proof by G.E. Coxson [1] that P-matrix recognition is co-NP-complete. The result follows by a reduction from the MAX CUT problem using results of S. Poljak and J. Rohn [5].

متن کامل

Co-NP-completeness of some matrix classification problems

The classes of P-, P 0-, R 0-, semimonotone, strictly semimonotone, column suucient, and nondegenerate matrices play important roles in studying solution properties of equations and complementarity problems and conver-gence/complexity analysis of methods for solving these problems. It is known that the problem of deciding whether a square matrix with integer/rational entries is a P-(or nondegen...

متن کامل

Indefinite copositive matrices with exactly one positive eigenvalue or exactly one negative eigenvalue

Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out if a matrix with exactly one negative eigenvalue is strictly copositive or not can be formulated ...

متن کامل

Ela Indefinite Copositive Matrices with Exactly One Positive Eigenvalue or Exactly One Negative Eigenvalue

Checking copositivity of a matrix is a co-NP-complete problem. This paper studies copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows that finding out if a matrix with exactly one negative eigenvalue is strictly copositive or not can be formulated ...

متن کامل

Sparse Sets, Approximable Sets, and Parallel Queries to NP

We show that if an NP-complete set or a coNP-complete set is polynomial-time disjunc-tive truth-table reducible to a sparse set then FP NP jj = FP NP log]. With a similar argument we show also that if SAT is O(log n)-approximable then FP NP jj = FP NP log]. Since FP NP jj = FP NP log] implies that SAT is O(logn)-approximable BFT97], it follows from our result that the two hypotheses are equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0710.3519  شماره 

صفحات  -

تاریخ انتشار 2007